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When the calculation of a unimolecular reaction rate constant is cast in the form of a master equation eigenvalue
problem, the magnitude of that rate is often smaller than the rounding error of the trace of the corresponding
reaction matrix. Here, a previously published procedure (Pritchard, H. O.J. Phys. Chem. A2004, 108, 5249-
5252) for solving this problem is extended to the case of more than one reaction product. An Appendix notes
the occurrence of avoided crossings between eigenvalues of the master equation in reversible, in mixed
reversible-irreversible, and in multiwell unimolecular reaction calculations.

Introduction

In a recent publication,1 a robust inversion method2 was tested
for the calculation of the eigenvalue corresponding to the
reaction rate constant of an irreversible unimolecular reaction
under conditions where standard linear algebra methods fail due
to numerical cancellation. During the processing of that paper,
a Reviewer asked whether the method could be extended to
the determination of more than one eigenvalue for processes
with more than one product. The question was answered, rather
hastily, in the affirmative based on the fact that similar
procedures3 had already been used to calculate the energies of
the 1s2 and 1s2s1S states of the helium atom to a very high
degree of precision.4 On further examination, it appears, as
described briefly in Appendix 1, that it is not possible to cast
the multiproduct irreversible unimolecular reaction problem in
a form where each individual rate constant is given by its own
distinct eigenvalue.

Basic Formulation

As usual, we consider an energy-level spectrum of the
molecule divided into consecutive grains of equilibrium popula-
tion ñi at the temperatureT in question. Without repeating the
basic formulation given previously,1 the master equation for the
system can be cast in the form of a positive definite symmetric
matrix [A + D], in which A is a simple transform of the matrix
Q of collisional energy-transfer probabilities;A itself is positive
semidefinite, that is, it has one eigenvalue which is identically
zero, and the remainder are all positive. Crucially, the eigen-
vector S0 corresponding to the zero eigenvalue has elements
(S0)j ) ñj

1/2.

Then, the smallest eigenvalue,γ0, of [A + D] (whereD is a
diagonal matrix containing the rate constants for the individual
decay processes) is the required rate constant and is equal to
the scalar product (S0, DΨ0), where ( , )denotes a scalar product
andΨ0 is the eigenvector of [A + D] corresponding toγ0.

We now wish to decomposeD into D ) D1 + D2 + ...,
whence the solutions for the individual rate constantsγ0

i , i )
1,2, ..., are

This result is straightforward except for the fact that even in
quite mundane situations, acceptable results cannot be obtained
when using double-precision (Fortran real*8) arithmetic due to
cancellation; compare the examples in Figure 1 of Appendix 1.

Computing machines supporting quadruple-precision (Fortran
real*16) arithmetic are not widely available; on the other hand,
multiple-precision emulation is available for Unix/Linux-type
machines,5 but the procedures are more cumbersome, and
execution is slower. For these reasons, we now present a simple
extension of the previous cancellation-resistant eigenvalue
procedure1 to the solution of eq 1.

As before,1 the test reaction was the isomerization of MeNC
f MeCN. Given the molecular constants, the density of states
F(E) was tabulated at 1 kcal mol-1 intervals by using standard
methods;6a also, from the reaction threshold at 39 kcal mol-1

up to the cutoff at 65 kcal mol-1 and with the same grain width,
the specific rate constantk(E) ≡ D1 was tabulated as the inverse
Laplace transform of the Arrhenius rate law.6b The dimension
of the test matrix was then 65.

This isomerization does, in fact, have a minor side reaction
(<1%), giving CH4 and HCN,7 but its kinetic parameters are
not known. Trialk(E) functions for theD2 component were
chosen either to start at the same threshold as that ofD1 but
with reduced numerical values or with the same numerical form
as that inD1 but commencing at a higher threshold.

For the test temperatureT, the grain populations were
calculated, and a∆Edown exponential transition probability8

matrix Q was constructed and, thence,A by symmetrization.
The corresponding reaction matrix [A + D] was formed from
the relaxation matrixA for the given pressure by addition of
the diagonal matrixD ) D1 + D2 as described in eq 1. All
calculations were performed in Fortran real*8 arithmetic and
verified in real*16 arithmetic over a standard pressure range of
10-3 e P/Torr e 106, unless otherwise stated.

Calculation of the Eigenvalue γ0. For completeness, an
outline of the original method1,2 is reproduced here. We define
a function
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γ0
1,2,...) (S0, D1Ψ0), (S0, D2Ψ0), ... (1)

φh(0) ) R(S0, [A + D + Rp0]
-1DS0) ) (S0, f) (2)
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whereR is a positive constant (usually chosen to be 1),p0 is
the operatorS0(S0, ), and

that is

Forming the scalar product ofS0 with eq 4, we have

where we have used the fact thatS0 is the normalized
eigenvector ofA corresponding to its zero eigenvalue. From
eqs 2 and 5, we then get

which has been shown2 to be a lower bound toγ0, with a
corresponding upper bound given byø(0) ) φh(0)/(1 - φh(0)/
R). The function of the constantR in these equations is to
stabilize the inversion in eq 3 to obtainf, if needed.

Calculation of the EigenvectorΨ0. We wish to solve the
equation

for the eigenvectorΨ0. With an arbitraryR > 0, this is
equivalent to2

since (S0, Ψ0) ) 1 by normalization, and it follows that the
eigenvector

In what follows, the eigenvalueγ0 will be taken as the upper
bound from the inversion calculation, it always being a much

closer approximation to the exact eigenvalue;1 also, as noted
previously,1,2 we have found the Choleski square root method9

to be a simple and stable procedure for calculating these
inverses.

Results and Discussion

Numerical comparison of the eigenvectors of [A + D]
calculated by eq 9 in real*8 arithmetic and those calculated by
standard linear algebra procedures (Householder/QL)10 in
real*16 arithmetic showed exact agreement to better than 6
significant figures for all 65 elements at all pressures in the
range 10-3 e P/Torr e 102 but degenerated gradually to 3 or
4 significant figures at 106 Torr. (Several tables demonstrating
comparisons between sets of eigenvalues and between sets of
eigenvectors are available in the Supporting Information as-
sociated with this paper.) This, then, renders calculation of the
partial rates of individual products by eq 1 a simple matter at
all pressures of practical interest.

The present procedures reduce the standard unimolecular
reaction eigenvalue problem of solving the reaction matrix [A
+ D] to a noniterative one, involving just two matrix inversions,
one of [A + D + Rp0] to get the eigenvalueγ0 and then of [A
+ D + Rp0 - γ0] to get the eigenvector. It does not matter that
the matrix [A + D] may be ill-conditioned because its inversion
is stabilized by the extraRp0 term, and should an instability
occur in the inversion, it can be countered by givingR a different
value.

The previous caveats1,2 concerning the use of very large
matrices in some unimolecular calculations, or of inversion
under extremes of pressure, still stand; however, Appendix 2
suggests a possible approach to a solution, at least for the case
of two competing reactions.

Appendix 1: Nondissipative Formulations

As an alternative to the usual dissipative formulation, the
master equation can also be cast in conservative form.11 One
variant, model (iii) of ref 12, has a single lumped product P
with equilibrium constantKeq ) [P]eq/[R]eq connected reversibly
to all of the above-threshold reactant R states. The elementsdi

of D are unfolded out of [A + D] to form the last row and
column of a new reaction matrixA′. This leaves the main body

Figure 1. Left-hand panel: two smallest eigenvalues of [A′ + D2]; right-hand panel: two smallest nonzero eigenvalues of [A′′]. Full lines are
calculated by the Householder/QL method in quadruple-precision (Fortran real*16) arithmetic; the points are by the same instruction set but in
double-precision (Fortran real*8) arithmetic. These calculations are seriously compromised by cancellation errors in real*8 arithmetic, even tothe
extent that reordering the instructions within the assembly and symmetrization of the relevant matrices can give markedly different answers; many
of the low-pressure points in the right-hand panel are correct to only 2 significant figures in real*8 arithmetic.

f ) R[A + D + Rp0]
-1DS0 (3)

[A + D + Rp0]f ) RDS0 (4)

(S0, [A + D + Rp0]f) ) (S0, Df) + R(S0, f) ) R(S0, DS0) (5)

φh(0) ) (S0, f) ) (S0, DS0) - (S0, Df)/R ) k∞ - (S0, Df)/R
(6)

[A + D - γ0]Ψ0 ) 0 (7)

[A + D + Rp0 - γ0]Ψ0 ) Rp0Ψ0 ) RS0 (8)

Ψ0 ) R[A + D + Rp0 - γ0]
-1S0 (9)
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of A′ the same as that of the originalA; the diagonal elements
are then adjusted to fulfill the conservation condition6c because
of the presence of the new row and column, following which,
the last row and column are brought into symmetry by using
detailed balancing.

The matrix A′ is now positive semidefinite, with a zero
eigenvalueγ′0 and a corresponding eigenvectorS′0 having all of
the usual properties; the next eigenvalueγ′1 is the relaxation
rate for the system and, in real*16 arithmetic, is exactlyγ0(1 +
Keq)/Keq, as required by standard theory.12,13

It now seems logical to represent the main reactionD1 in
this fashion and to graft on to it a second, smaller irreversible
component by forming the matrix [A′ + D2] just in the same
manner as [A + D] was formed fromA before. However, the
result is an avoided crossing, as shown in the left-hand panel
of Figure 1. Assuming that this behavior was due to some, as
yet, unexplained symmetry violation, theD2 was unfolded out
of the diagonal by connection to a second product species P′ to
form a conservative reaction matrixA′′, but (for a different pair
of D1, D2) a similar result is shown in the right-hand panel of
Figure 1.

These avoided crossings have the interesting property that
as the pressure is reduced, they propagate leftwards upon
encountering each of the internal relaxation eigenvalues6d γ′i, i
> 1, or γ′′i, i > 2. At each crossing, the horizontal line
experiences a small upward displacement until the last one
occurs at around 10-12 Torr; the differences between the high-
and low-pressure limits for this eigenvalue are small, 1-10%
depending upon the values ofD1 andD2, and are independent
of the form of the collisional probability matrix for a givenD1,
D2.

Avoided crossings, in the context of unimolecular reaction
calculations, do not appear to have been mentioned before,
although there is probable evidence for their existence in the
recent work of Blitz, Hughes, Pilling, and Robertson,14 possibly
in their Figure 6d-e but more clearly in Figure 7a-c. However,
they still were able to calculate acceptable rate constants “from
a mixture ... of eigenvalues”slanguage consistent with avoided
crossing phenomena.

These calculations were likewise compromised by cancella-
tion problems, and multiple-precision arithmetic was needed to
complete them. In view of current interest in these multiwell
problems, the following is a brief outline of extension to multiple
eigenvalues.

The generalization of eq 8 for any eigenvalueγj is

wherep ) u(u, ) andu is an arbitrary vector withu such that-
(u, uj) * 0. It can be shown that

defines the eigenvaluesγj of [A + D] for all j, the corresponding
eigenvectors being

with normalization (u, uj) ) 1.
Equation 11 can be reduced to a fixed-point equation

which becomes eq 2 ifu ) S0 becauseAS0 ) 0. Bothφ(x) and
φh(x) are equal to zero atx ) -∞ and rise toward∞ as x
approaches the lowest eigenvalue of [A + D + Rp]. Following
this singularity, the functions resume at-∞ and reach∞ again
in the vicinity of the next eigenvalue, and so on. Each pair of
singularities brackets an eigenvalue of [A + D], all of them
encompassing the set for which (u, uj) * 0. For eachj ) 0, 1,
2, ... J, if (u, uj) * 0, then the first (J + 1) eigenvalues are
singularities. However, their location either by iteration or by
Newton’s method can prove difficult as there is an inflection
at each crossing of zero, but bisection can be used.

A second method that avoids the need to use bisection is
that given in the work mentioned previously on the singlet states
of He.4,15

Appendix 2: Falloff Shape Correlations

The present methods can still fail in extreme cases,1,2 but
solutions to eq 1, acceptable for approximate numerical model-
ing, may still be possible. As noted previously, given a relaxation
matrixM having the same eigenvalues asA, the reaction matrix
[M + D] can be solved analytically for the rate constant and
eigenvector,16 and the shape of the falloff curve for [M + D] is
very similar to that for [A + D], although the low-pressure limits
are different.1

The low-pressure limiting rate for [A + D] is easily
established as the smallest eigenvalue of the matrixA truncated
at threshold;17,18neither calculation of this eigenvalue nor those
of A itself usually presents any problem. Having then recalcu-
lated the falloff curve for [M + D] with a pressure shift bringing
its limits into coincidence with those of [A + D], the eigenvector
can be used in eq 1 to give an estimate for the dominant reaction
D1; the rates will be close to the true values at both pressure
limits and usually within∼(10% in midrange. The same is
not true, however, for the minor reaction as the magnitudes of
the vector elements of [M + D] at low pressures decline too
slowly with increasing energy, causing the falloff to be too
shallow; thus, some method of locating the low-pressure limit
for the second reaction is needed.

This may be possible because the multiproduct rates for the
strong-collision matrix6e [µ(1 - p0) + D] are already known
analytically,19 and those for [M + D] can be calculated
numerically, yielding the following low-pressure equalities

where γap,1, γap,2 are the strong-collision rates for the two
reactions in question,Φ0 is the eigenvector corresponding to
γ0 of [M + D] and Φ′0 refers to a different [M + D] derived
from a differentA. This is equivalent to saying that for a given
pairD1, D2, the pressure shifts at the low-pressure limit between
the two reactions for any [M + D] matrix are the same as that
for the strong-collision case with the sameD1, D2. These
correlations, however, do not extend to [A + D], but an analysis
of these equivalences, together with an estimate of the shape
broadening factor,20 may resolve the issue.

Acknowledgment. I wish to thank Dr. Raj Vatsya for many
valuable comments and for permission to use, in Appendix 1,
unpublished results from his forthcoming monograph on varia-
tional and perturbation methods.

Supporting Information Available: An extensively docu-
mented set of Fortran algorithms and input data with which to

[A + D + Rp - γj]uj ) Rpuj ) Ru(u, uj) (10)

φ(γj) ) R(u, [A + D + Rp - γj]
-1u) ) 1 (11)

uj ) R[A + D + Rp - γj]
-1u (12)

φh(γ) ) R - (R - γ)φ(γ)

) R(u, [A + D + Rp - γ]-1[A + D]u) ) γ (13)

lim
µf0

γap,1

γap,2
) lim

Pf0

(S0, D1Φ0)

(S0, D2Φ0)
) lim

Pf0

(S0, D1Φ′0)
(S0, D2Φ′0)
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demonstrate these points. This material is available free of
charge via the Internet at http://pubs.acs.org.
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